
How we Operate
Ceph at Scale
Ceph Day NYC 2024

Matt Vandermeulen, Storage Systems

Contents
● Who are we?
● Ceph use at DO
● Automation
● Cluster Operations
● Observability
● Reflection
● Q&A

2012

2016

2017

What is
DigitalOcean?

3

A brief history

● Founded in 2012
● Core concept: Simplicity
● SSD backed VM was very attractive in 2012
● Four years later we introduce Volumes (block)
● Many more products since, including Spaces (object)

and several SaaS offerings such as DBaaS, DOKS (k8s),
Serverless Functions, and managed hosting with
Cloudways

● More than a dozen datacenters in 9 regions
● IPO in March 2021

Droplet: Introduction
of the SSD-backed
VM

Volumes: Ceph
backed detachable
droplet storage

Spaces: Ceph backed
object storage

Ceph at DO
A look at how DigitalOcean successfully scales and manages Ceph clusters

digitalocean.com

Ceph Usage

● Block storage (Volumes)
● Object storage (Spaces)
● Other teams consume Volumes and Spaces for many products

66

Quick Stats

47 Production Pacific
clusters

8 Staging clusters
(some Reef!)

Total raw Ceph
capacity

12+ PB in our biggest
cluster

OSDs in the fleet
across 1,600+ nodes

Ceph at DO

50 Cephs 200+ PB 28,500+

happy osd noises

01

02

03

Automation:
Tooling

7

Chef runs on a staggered cron throughout the fleet ensuring
packages are installed as expected, and other things we don’t
manage, like the kernel, are up to date.
We heavily rely on Ansible/AWX to do many maintenance
operations that are long running, cluster deployments,
augments, etc.
There are many bash scripts still written and used as
necessary. Don’t let perfect be the enemy of progress.

Chef for general
configuration
management

Ansible via AWX for
just about everything
Ceph

Hacky bash scripts or
other one-off use
case specific tools

digitalocean.com

Automation: Ansible Use Cases

● Net-new Ceph cluster deployment
● Existing Ceph cluster augment: Nodes and disks
● Node preflight checks
● Node reboots: On demand, and when required (i.e. kernel updates)
● Maintaining node-local and centralized Ceph configuration
● Ceph upgrades, and other long-running operations
● OSD restarts
● Node/Cluster decommission
● Lots of utilities/goodies

digitalocean.com

Automation: Snowflakes

● Automation thrives on consistency
● Snowflakes, being unique, are not consistent
● Snowflakes include

○ CPU, RAM, Disk models
○ Network configs
○ Centralized Ceph configuration
○ That one script you forgot was running…

● Melt your snowflakes!

digitalocean.com

Operations: Deployment

● Create the initial monmap, deploy monitors, establish quorum
○ This requires some integration with our secrets solution

● OSDs are created ahead of time, then deployed in parallel
○ CRUSH is populated first, then all OSDs deployed in parallel

● Deploy and start OSD containers
● Verify cluster is healthy and bored
● Future: Zero-intervention deployment

digitalocean.com

Operations: Augment

● Block and Object used to be slightly different
○ Block used to slowly upweight OSDs over time to mitigate

peering latency
● We now cancel all remapped backfill and slowly undo them

○ First set nobackfill and norebalance OSD flags
○ Makes use of pgremapper
○ Mostly to maximize concurrency and minimize degradation

● It’s possible we could make use of the normal upmap balancer
○ Less control of concurrency here

● The way we approach growing our capacity has been changing
○ We are moving towards deploying new clusters, and away from

adding capacity to existing clusters

https://github.com/digitalocean/pgremapper

digitalocean.com

Operations: Maintenance

● Cluster augments
● OSD restarts, failures, flaps
● Node reboots, failures
● Peering storms

digitalocean.com

Operations: Peering Latency

digitalocean.com

Operations: Peering Latency

● In a mailing list message, Sage suggested reducing
paxos_propose_interval from its 2s default

● We observed that this made peering latency (slightly) worse
● What if we don’t let peering begin as the OSD process starts?
● Set noup, bring OSDs up, wait for status = preboot, unset noup
● Reduces CPU contention when starting a host full of OSDs at once
● Reduces osdmap updates, too!
● Now reducing paxos_propose_interval seems to help!

https://www.mail-archive.com/ceph-users@ceph.io/msg13394.html

digitalocean.com

Operations: Peering Latency

digitalocean.com

Operations: Index Pain

● Our Spaces clusters have billions (and billions) of objects
● RGW index layer does not like buckets with millions of objects

○ Rule of thumb: 100k objects per shard
○ Too many shards make for poor listing performance

● A lot of cpu time was spent in rocksdb
● RGW defaults are not tailored to handle this scale

digitalocean.com

Operations: Index Squish!

● Setting osd_async_recovery_min_cost=0 has helped a lot
● With Nautilus, the ttl option in rocksdb was available
● This option forces compaction on data that reaches a given age
● We now have consistently higher load on our index nodes

○ Absolutely worth the trade off
● We were able to discard tons of junk data

○ We have an upper bound on tombstone lifetime!
● We disabled periodic compactions in favour of ttl compactions
● This has been a silver bullet!

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide#periodic-and-ttl-compaction

digitalocean.com

Operations: Index Squishier!

● rocksdb_cf_compact_on_deletion options have been introduced
○ Introduced by Mark in #47221
○ Available in 16.2.15 (disabled by default)
○ Available in 18.2.2 (enabled by default)
○ Didn’t help upgraded clusters without resharded rocksdb
○ #55676 from Josh Baergen fixes this for the default column family

● Compactions triggered by iteration instead of after a period of time
● Three options related to compact on delete

○ A flag to turn it on and off
○ Sliding window value, a number of iterated entries
○ A trigger value, observed tombstones triggers compaction

● We’ve backported this to our Pacific branch
○ Used in conjunction with TTL on index
○ Compact on deletion used for Pacific fleet

https://github.com/ceph/ceph/pull/47221
https://github.com/ceph/ceph/blob/v16.2.15/src/common/options.cc#L3971-L3985
https://github.com/ceph/ceph/blob/v18.2.2/src/common/options/global.yaml.in#L3556-L3585
https://github.com/ceph/ceph/pull/55676

digitalocean.com

Operations: Observability

● ceph_exporter vs prometheus module
● storexporter
● marigraph
● Alert on actionable things
● Make use of inhibition as appropriate

https://github.com/digitalocean/ceph_exporter

digitalocean.com

Observability: marigraph

● These dashboards are the number one stop for performance
● If we suspect any issue with a cluster, this is what we check first
● Dashboard graphs include:

○ IO rate, timeouts
○ R/W latencies (avg/median, p90/p99/p100)
○ Histograms for those latencies

● This has helped us find and track a few issues over the years
○ Effects of flipping bluefs_buffered_io back and forth
○ Nautilus to Pacific post-upgrade write amplification
○ Higher latency ultimately caused by a backlog of discards

digitalocean.com

Observability: marigraph

Reflection
If we did it all again

digitalocean.com

Reflection

● Treat block and object clusters similarly
● Use a single source of truth… for any truth
● Finding that tradeoff between automation and services is tricky
● Melt your snowflakes as soon as possible!

Thank You!
Hiring plug http://do.co/jobs
Q&A?

http://do.co/jobs

